Section 12.1 — Scatter Plots and Correlation

Chris Godbout

Outline

Introduction

Correlations

Significance of Correlation

Coefficient of Determination

Introduction

Definitions

Definition (Scatter Plot)

A scatter plot is a graph on the xy-plane that contains one point for each pair of data.

Definitions

Definition (Scatter Plot)

A scatter plot is a graph on the xy-plane that contains one point for each pair of data.

Definition (Variables)

If there is some sort of relationships, we say that a change in variable — the explanatory variable — influences a change in the other variable — the response variable.

2

Grades

Hours Unsupervised	0	0	0.5	1.0	1.0	1.5
Overall Grade Average	96	91	88	92	94	91
Hours Unsupervised	2.0	3.0	3.0	4.0	4.5	5.6
Overall Grade Average	87	85	81	80	77	72

Grades

Exam Scores

Exam 3	74	65	90	88	14	71	35	93	0	64	70
Final	60	77	73	97	40	77	43	83	42	68	78
Exam 3	65	66	37	70	54	60	35	26	37	63	8
Final	76	80	43	65	68	86	66	39	48	69	18

Exam Scores

Correlations

Linear Correlation

Nonlinear Correlation

Pearson Correlation Coefficient

Definition (Correlation Coefficient)

The Pearson correlation coefficient, ρ , is the parameter that measures the strength of a linear relationship between two quantitative variables in a population. The correlation coefficient for a sample is denoted r. It is always between -1 and 1, inclusive.

$$-1 \le r \le 1$$

Formulas

Simple to remember

$$r = \frac{\sum (Z_X Z_Y)}{n-1}$$

Formulas

Simple to remember

$$r = \frac{\sum (z_x z_y)}{n-1}$$

Harder to remember

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2}\sqrt{n(\sum y)^2 - (\sum y)^2}}$$

Correlation?

Significance of Correlation

Significance

A sample correlation coefficient, r, is significant if $|r| \geq r_{\alpha}$.

Hypothesis Test!

Hypotheses

 $H_0: \rho \leq 0$

$$H_0: \rho = 0 \qquad \qquad H_0: \rho \geq 0$$

$$H_a: \rho \neq 0$$
 $H_a: \rho < 0$ $H_a: \rho > 0$

Hypothesis Test!

Hypotheses

Correlation Negative Correlation Positive Correlation

 $H_0: \rho \leq 0$

$$H_0: \rho = 0 \qquad \qquad H_0: \rho \ge 0$$

$$H_a: \rho \neq 0$$
 $H_a: \rho < 0$ $H_a: \rho > 0$

Test Statistic

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

with n-2 degrees of freedom.

Coefficient of Determination

Definition

Definition (Coefficient of Determination)

The coefficient of determination, r^2 , is the measure of the proportion of variation in the response variable that can be associated with the variation in the explanatory variable.

